Modeling and Fabrication of Ionic Polymer-metal Composite (ipmc) Sensors

نویسنده

  • Hong Lei
چکیده

MODELING AND FABRICATION OF IONIC POLYMER-METAL COMPOSITE (IPMC) SENSORS By Hong Lei Ionic polymer-metal composites (IPMCs) are an important class of electroactive polymers (EAPs) with built-in actuation and sensing capabilities. They have received tremendous interest for their potential in various sensor applications. In this dissertation, a physics-based dynamic model is proposed for cantilevered IPMC sensors that are excited at the base, and the humiditydependence of IPMC sensing dynamics is discussed based on this model. To ensure the sensing consistency, thick parylene encapsulation is proposed for IPMC sensors, and the performance of encapsulated IPMC sensors is evaluated. Fabrication and modeling of two novel IPMC sensors and micro-fabrication of IPMC-based artificial lateral line system are also presented. These contributions are further elaborated below. The proposed dynamic model is physics-based, and it combines the vibration dynamics of a flexible beam under base excitation and the ion transport dynamics within an IPMC. In addition, it incorporates the effect of a tip mass. The model is further reduced to finite dimensional one, based on which an inverse compensation scheme is proposed to reconstruct the base excitation signal given the sensor output. Both simulation and experiments are conducted to validate the model and the inverse compensation scheme. The humidity-dependence of IPMC sensing dynamics is also studied based on the latter model, where the humidity-dependence of five physical parameters is captured with polynomial functions, which are then plugged into the model to predict the IPMC sensing output. Encapsulated IPMC sensors based on thick parylene coating are presented to ensure sensing consistency. The proposed fabrication process comprises major steps of parylene deposition and water drive-in. The physical properties of coated IPMCs are tested and their sensing performances are evaluated under different media along with the comparison with the typical naked IPMC sensors. Experimental results show that the proposed thick parylene coating can effectively maintain the sensing consistency, which allows IPMC sensors to be used in practical applications. Two novel IPMC sensors capable of omnidirectional sensing are proposed. One is fabricated by plating two pairs of electrodes on orthogonal surfaces of a Nafion square column, and the other uses Nafion tubing as the raw materials to fabricate a tubular IPMC. The sensing responses of both fabricated IPMC sensors are characterized to evaluate their omnidirectional sensing capabilities and the coupling issue is discussed for both cases. An empirical model and a physical model are further developed for the proposed square column IPMC sensor and tubular IPMC sensor, respectively. Inspired by the lateral line system, a micro-fabrication process is presented to realize flow sensor arrays based on IPMCs. Several challenges are addressed in the proposed recipe including the non-planar process, soft material, and selective formation of electrodes. A new approach of double-subtraction is developed and the first prototype is presented. Dedicated to my family with all my love and gratitude.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A theoretical model for analysis of ionic polymer metal composite sensors in fluid environments

By the past two decades IPMCs have been intensively studied because of their special capabilities for actuation and sensing.This paper presents a theoretical physics based model for analyzing the behavior of IPMC sensors in fluid environments. The mechanical vibration of the IPMC strip is described by the classical Euler–Bernoulli beam theory. The model also takes in to account the physical pro...

متن کامل

Nonlinear Parametric Identification of an IPMC Actuator Model

Ionic polymer metal composite is a class of electro-active polymers which are very attractive smart actuators due to its large bending deflection, high mechanical flexibility, low excitation voltage, low density, and ease of fabrication. These properties make IPMC a proper candidate for many applications in various fields such as robotics, aerospace, biomedicine, etc. Although the actuation beh...

متن کامل

Design and Fabrication of a Large-Stroke Deformable Mirror Using a Gear-Shape Ionic-Conductive Polymer Metal Composite

Conventional camera modules with image sensors manipulate the focus or zoom by moving lenses. Although motors, such as voice-coil motors, can move the lens sets precisely, large volume, high power consumption, and long moving time are critical issues for motor-type camera modules. A deformable mirror (DM) provides a good opportunity to improve these issues. The DM is a reflective type optical c...

متن کامل

Fabrication and Characterization of a Micromachined Swirl-Shaped Ionic Polymer Metal Composite Actuator with Electrodes Exhibiting Asymmetric Resistance

This paper presents a swirl-shaped microfeatured ionic polymer-metal composite (IPMC) actuator. A novel micromachining process was developed to fabricate an array of IPMC actuators on a glass substrate and to ensure that no shortcircuits occur between the electrodes of the actuator. We demonstrated a microfluidic scheme in which surface tension was used to construct swirl-shaped planar IPMC dev...

متن کامل

IONIC POLYMER-METAL COMPOSITE ARTIFICIAL MUSCLES AND SENSORS: A CONTROL SYSTEMS PERSPECTIVE By

IONIC POLYMER-METAL COMPOSITE ARTIFICIAL MUSCLES AND SENSORS: A CONTROL SYSTEMS PERSPECTIVE By Zheng Chen Ionic polymer metal composites (IPMCs) form an important category of electroactive polymers (EAPs), also known as artificial muscles. IPMCs have many potential applications in robotics, biomedical devices, and micro/nano manipulation systems. In this dissertation, a systems perspective is t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015